In this paper, we explore antisemitism in contemporary Hungary. After briefly introducing the different types of antisemitism, we show the results of a quantitative survey carried out in 2017 on a nationally representative sample. Next, we present the research we conducted on the articles related to Jews from the far-right site Kuruc.info. Our corpus contained 2,289 articles from the period between February 28, 2016, and March 20, 2019. To identify latent topics in the text, we employed one of the methods of Natural Language Processing (NLP), namely topic modeling using the LDA method. We extracted fifteen topics. We found that racial antisemitism, unmeasurable by survey research, is overtly present in the discourse of Kuruc.info. Moreover, we identified topics that were connected to other types of antisemitism.
antisemitism, Hungary, Natural Language Processing, topic modeling, LDA